In engineering analysis, geometric symmetry, when exploited, has two potential benefits: (1) it can significantly reduce the computational time, and (2) it can simultaneously improve the accuracy of the computed solution. Consequently, most CAD/CAE systems have standard `provisions' for exploiting symmetry. These provisions are however inadequate in that they needlessly burden the design engineer with time consuming and errorprone tasks of: (1) symmetry detection, (2) symmetry cell construction, (3) boundary mapping and (4) symmetry reduction. In this paper, we propose a framework for automated symmetry exploitation in engineering analysis. By formalizing all four tasks listed above, and by unifying them under a single framework, we show how automated symmetry exploitation can be achieved. We discuss implementations of the proposed work within two commercially available CAD/CAE systems, namely FEMLABTM and SolidWorksTM.