Geometric constraints have proved to be efficient for enhancing the realism of shape animation. The present paper addresses the computation and the preservation of the volume enclosed by multiresolution meshes. A wavelet based representation allows the mesh to be handled at any level of resolution. The key contribution is the calculation of the volume as a trilinear form with respect to the multiresolution coefficients. Efficiency is reached thanks to the preprocessing of a sparse 3D data structure involving the transposition of the filters while represented as a lifting scheme. A versatile and interactive method for preserving the volume during a deformation process is then proposed. It is based on a quadratic minimization subject to a linearization of the volume constraint. A closed form of the solution is derived.