Sciweavers

COMGEO
2007
ACM

Geometric dilation of closed planar curves: New lower bounds

14 years 27 days ago
Geometric dilation of closed planar curves: New lower bounds
Given two points on a closed planar curve, C, we can divide the length of a shortest connecting path in C by their Euclidean distance. The supremum of these ratios, taken over all pairs of points on the curve, is called the geometric dilation of C. We provide lower bounds for the dilation of closed curves in terms of their geometric properties, and prove that the circle is the only closed curve achieving a dilation of π/2, which is the smallest dilation possible. Our main tool is a new geometric transformation technique based on the perimeter halving pairs of C. Key words: computational geometry, convex geometry, convex curves, dilation, detour, lower bound, halving pair, halving pair transformation
Annette Ebbers-Baumann, Ansgar Grüne, Rolf Kl
Added 12 Dec 2010
Updated 12 Dec 2010
Type Journal
Year 2007
Where COMGEO
Authors Annette Ebbers-Baumann, Ansgar Grüne, Rolf Klein
Comments (0)