Variational methods are among the most accurate techniques for estimating the optic flow. They yield dense flow fields and can be designed such that they preserve discontinuities, estimate large displacements correctly and perform well under noise and varying illumination. However, such adaptations render the minimisation of the underlying energy functional very expensive in terms of computational costs: Typically one or more large linear or nonlinear equation systems have to be solved in order to obtain the desired solution. Consequently, variational methods are considered to be too slow for real-time performance. In our paper we address this problem in two ways: (i) We present a numerical framework based on bidirectional multigrid methods for accelerating a broad class of variational optic flow methods with different constancy and smoothness assumptions. Thereby, our work focuses particularly on regularisation strategies that preserve discontinuities. (ii) We show by the examples of ...