Sciweavers

JAIR
2008

Online Planning Algorithms for POMDPs

13 years 11 months ago
Online Planning Algorithms for POMDPs
Partially Observable Markov Decision Processes (POMDPs) provide a rich framework for sequential decision-making under uncertainty in stochastic domains. However, solving a POMDP is often intractable except for small problems due to their complexity. Here, we focus on online approaches that alleviate the computational complexity by computing good local policies at each decision step during the execution. Online algorithms generally consist of a lookahead search to find the best action to execute at each time step in an environment. Our objectives here are to survey the various existing online POMDP methods, analyze their properties and discuss their advantages and disadvantages; and to thoroughly evaluate these online approaches in different environments under various metrics (return, error bound reduction, lower bound improvement). Our experimental results indicate that state-of-the-art online heuristic search methods can handle large POMDP domains efficiently.
Stéphane Ross, Joelle Pineau, Sébast
Added 12 Dec 2010
Updated 12 Dec 2010
Type Journal
Year 2008
Where JAIR
Authors Stéphane Ross, Joelle Pineau, Sébastien Paquet, Brahim Chaib-draa
Comments (0)