Protein complexes are fundamental for understanding principles of cellular organizations. Accurate and fast protein complex prediction from the PPI networks of increasing sizes can serve as a guide for biological experiments to discover novel protein complexes. However, protein complex prediction from PPI networks is a hard problem, especially in situations where the PPI network is noisy. We know from previous work that proteins that do not interact, but share interaction partners (level-2 neighbors) often share biological functions. The strength of functional association can be estimated using a topological weight, FS-Weight. Here we study the use of indirect interactions between level-2 neighbors (level-2 interactions) for protein complex prediction. All direct and indirect interactions are first weighted using topological weight (FS-Weight). Interactions with low weight are removed from the network, while level-2 interactions with high weight are introduced into the interaction net...