— In this paper we concentrate on rate-1/3 systematic parallel concatenated convolutional codes and their rate-1/2 punctured child codes. Assuming maximum-likelihood decoding over an additive white Gaussian channel, we demonstrate that a rate-1/2 non-systematic child code can exhibit a lower error floor than that of its rate-1/3 parent code, if a particular condition is met. However, assuming iterative decoding, convergence of the non-systematic code towards low bit-error rates is problematic. To alleviate this problem, we propose rate-1/2 partially-systematic codes that can still achieve a lower error floor than that of their rate-1/3 parent codes. Results obtained from extrinsic information transfer charts and simulations support our conclusion.
Ioannis Chatzigeorgiou, Miguel R. D. Rodrigues, Ia