Recently there has been a growing interest of research in tabling in the logic programming community because of its usefulness in a variety of application domains including program analysis, parsing, deductive databases, theorem proving, model checking, and logic-based probabilistic learning. The main idea of tabling is to memorize the answers to some subgoals and use the answers to resolve subsequent variant subgoals. Early resolution mechanisms proposed for tabling such as OLDT and SLG rely on suspension and resumption of subgoals to compute fixpoints. Recently, the iterative approach named linear tabling has received considerable attention because of its simplicity, ease of implementation, and good space efficiency. Linear tabling is a framework from which different methods can be derived based on the strategies used in handling looping subgoals. One decision concerns when answers are consumed and returned. This paper describes two strategies, namely, lazy and eager strategies, a...