Sciweavers

CORR
2007
Springer

Model Selection Through Sparse Maximum Likelihood Estimation

13 years 11 months ago
Model Selection Through Sparse Maximum Likelihood Estimation
We consider the problem of estimating the parameters of a Gaussian or binary distribution in such a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum likelihood problem with an added ℓ1-norm penalty term. The problem as formulated is convex but the memory requirements and complexity of existing interior point methods are prohibitive for problems with more than tens of nodes. We present two new algorithms for solving problems with at least a thousand nodes in the Gaussian case. Our first algorithm uses block coordinate descent, and can be interpreted as recursive ℓ1-norm penalized regression. Our second algorithm, based on Nesterov’s first order method, yields a complexity estimate with a better dependence on problem size than existing interior point methods. Using a log determinant relaxation of the log partition function (Wainwright and Jordan [2006]), we show that these same algorithms can be used to solve an approximate sparse m...
Onureena Banerjee, Laurent El Ghaoui, Alexandre d'
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2007
Where CORR
Authors Onureena Banerjee, Laurent El Ghaoui, Alexandre d'Aspremont
Comments (0)