To minimize the execution time of a sensing task over a multi-hop hierarchical sensor network, we present a coordinated scheduling method following the divisible load scheduling paradigm. The proposed scheduling strategy builds from eliminating transmission collisions and idle gaps between two successive data transmissions. We consider a sensor network consisting of several clusters. In a cluster, after related raw data measured by source nodes are collected at the fusion node, in-network data aggregation is further considered. The scheduling strategies consist of two phases: intra-cluster scheduling and inter-cluster scheduling. Intra-cluster scheduling deals with assigning different fractions of a sensing workload among source nodes in each cluster; inter-cluster scheduling involves the distribution of fused data among all fusion nodes. Closed-form solutions to the problem of task scheduling are derived. Finally, numerical examples are presented to demonstrate the impacts of differe...