We propose a range of deep lexical acquisition methods which make use of morphological, syntactic and ontological language resources to model word similarity and bootstrap from a seed lexicon. The different methods are deployed in learning lexical items for a precision grammar, and shown to each have strengths and weaknesses over different word classes. A particular focus of this paper is the relative accessibility of different language resource types, and predicted “bang for the buck” associated with each in deep lexical acquisition applications.