As more and more genomes are sequenced, evolutionary biologists are becoming increasingly interested in evolution at the level of whole genomes, in scenarios in which the genome evolves through insertions, duplications, deletions, and movements of genes along its chromosomes. In the mathematical model pioneered by Sankoff and others, a unichromosomal genome is represented by a signed permutation of a multiset of genes; Hannenhalli and Pevzner showed that the edit distance between two signed permutations of the same set can be computed in polynomial time when all operations are inversions. El-Mabrouk extended that result to allow deletions and a limited form of insertions (which forbids duplications); in turn we extended it to compute a nearly optimal edit sequence between an arbitrary genome and the identity permutation. In this paper we extend and improve our previous work in two major ways. We generalize our approach to handle duplications as well as insertions and thus enable the c...
Krister M. Swenson, Mark Marron, Joel V. Earnest-D