Sciweavers

ISCI
2006

Streaming data reduction using low-memory factored representations

13 years 11 months ago
Streaming data reduction using low-memory factored representations
Many special purpose algorithms exist for extracting information from streaming data. Constraints are imposed on the total memory and on the average processing time per data item. These constraints are usually satisfied by deciding in advance the kind of information one wishes to extract, and then extracting only the data relevant for that goal. Here we propose a general data representation that can be computed using only modest memory requirements with only limited processing power per data item, and yet permits the application of an arbitrary data mining algorithm chosen and/or adjusted after the data collection process has begun. The new representation allows for the at-once analysis of a significantly larger number of data items than would be possible using the original representation of the data. The method depends on a rapid computation of a factored form of the original data set. The method is illustrated with two real datasets, one with dense and one with sparse attribute valu...
David Littau, Daniel Boley
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2006
Where ISCI
Authors David Littau, Daniel Boley
Comments (0)