Sciweavers

IVC
2006

Face recognition using optimal linear components of range images

13 years 11 months ago
Face recognition using optimal linear components of range images
This paper investigates the use of range images of faces for recognizing people. 3D scans of faces lead to range images that are linearly projected to low-dimensional subspaces for use in a classifier, say a nearest neighbor classifier or a support vector machine, to label people. Learning of subspaces is performed using an optimal component analysis, i.e. a stochastic optimization algorithm (on a Grassmann manifold) to find a subspace that maximizes classifier performance on the training image set. Results are presented for face recognition using FSU face database, and are compared with standard component analysis such as PCA and ICA. This provides an efficient tool for analyzing certain aspects of facial shapes while avoiding a difficult task of geometric surface modeling. Key words: face recognition, range imaging, optimal component analysis, nearest neighbor classifier, Grassmann manifold
Anuj Srivastava, Xiuwen Liu, Curt Hesher
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2006
Where IVC
Authors Anuj Srivastava, Xiuwen Liu, Curt Hesher
Comments (0)