Sciweavers

JMLR
2008

Algorithms for Sparse Linear Classifiers in the Massive Data Setting

14 years 16 days ago
Algorithms for Sparse Linear Classifiers in the Massive Data Setting
Classifiers favoring sparse solutions, such as support vector machines, relevance vector machines, LASSO-regression based classifiers, etc., provide competitive methods for classification problems in high dimensions. However, current algorithms for training sparse classifiers typically scale quite unfavorably with respect to the number of training examples. This paper proposes online and multipass algorithms for training sparse linear classifiers for high dimensional data. These algorithms have computational complexity and memory requirements that make learning on massive data sets feasible. The central idea that makes this possible is a straightforward quadratic approximation to the likelihood function.
Suhrid Balakrishnan, David Madigan
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2008
Where JMLR
Authors Suhrid Balakrishnan, David Madigan
Comments (0)