Sciweavers

JMLR
2008

Graphical Methods for Efficient Likelihood Inference in Gaussian Covariance Models

13 years 11 months ago
Graphical Methods for Efficient Likelihood Inference in Gaussian Covariance Models
In graphical modelling, a bi-directed graph encodes marginal independences among random variables that are identified with the vertices of the graph. We show how to transform a bi-directed graph into a maximal ancestral graph that (i) represents the same independence structure as the original bi-directed graph, and (ii) minimizes the number of arrowheads among all ancestral graphs satisfying (i). Here the number of arrowheads of an ancestral graph is the number of directed edges plus twice the number of bi-directed edges. In Gaussian models, this construction can be used for more efficient iterative maximization of the likelihood function and to determine when maximum likelihood estimates are equal to empirical counterparts.
Mathias Drton, Thomas S. Richardson
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2008
Where JMLR
Authors Mathias Drton, Thomas S. Richardson
Comments (0)