Recent advances in space and computer technologies are revolutionizing the way remotely sensed data is collected, managed and interpreted. In particular, NASA is continuously gathering very high-dimensional imagery data from the surface of the Earth with hyperspectral sensors such as the Jet Propulsion Laboratory's airborne visible-infrared imaging spectrometer (AVIRIS) or the Hyperion imager aboard Earth Observing-1 (EO-1) satellite platform. The development of efficient techniques for extracting scientific understanding from the massive amount of collected data is critical for space-based Earth science and planetary exploration. In particular, many hyperspectral imaging applications demand real time or near real-time performance. Examples include homeland security/defense, environmental modeling and assessment, wild-land fire tracking, biological threat detection, and monitoring of oil spills and other types of chemical contamination. Only a few parallel processing strategies f...
Antonio J. Plaza