One of the key challenges in designing a rate adaptation scheme for IEEE 802.11 wireless LANs (WLANs) is to differentiate bit errors from link-layer collisions. Many recent rate adaptation schemes adopt the RTS/CTS mechanism to prevent collision losses from triggering unnecessary rate decrease. However, the RTS/CTS handshake incurs significant overhead and is rarely activated in today's infrastructure WLANs. In this paper we propose a new rate adaptation scheme that mitigates the collision effect on the operation of rate adaptation. In contrast to previous approaches adopting fixed rateincreasing and decreasing thresholds, our scheme varies threshold values based on the measured network status. Using the "retry" information in 802.11 MAC headers as feedback, we enable the transmitter to gauge current network state. The proposed rate adaptation scheme does not require additional probing overhead incurred by RTS/CTS exchanges and can be easily deployed without changes in ...