Abstract. Imitation learning is an intuitive and easy way of programming robots. Instead of specifying motor commands, you simply show the robot what to do. This paper presents a modular connectionist architecture that enables imitation learning in a simulated robot. The robot imitates human dance movements, and the architecture self-organizes the decomposition of movements into submovements, which are controlled by different modules. Modules both dominate and collaborate during control of the robot. Low-level examination of the inverse models (i.e. motor controllers) reveals a recurring pattern of neural activity during repetition of movements, indicating that the modules successfully capture specific parts of the trajectory to be imitated.