In image motion analysis as well as for several application fields like daily pluviometry data modeling, observations contain two components of different nature. A first part is made with discrete values accounting for some symbolic information and a second part records a continuous (real-valued) measurement. We call such type of observations "mixed-state observations". In this work we introduce a generalization of Besag's auto-models to deal with mixed-state observations at each site of a lattice. A careful construction as well as important properties of the model will be given. A special class of positive Gaussian mixed-state auto-models is proposed for the analysis of motion textures from video sequences. This model is first explored via simulations. We then apply it to real images of dynamic natural scenes.
Patrick Bouthemy, C. Hardouin, Gwenaëlle Piri