We present worst case bounds for the learning rate of a known prediction method that is based on hierarchical applications of binary context tree weighting (CTW) predictors. A heuristic application of this approach that relies on Huffman's alphabet decomposition is known to achieve state-ofthe-art performance in prediction and lossless compression benchmarks. We show that our new bound for this heuristic is tighter than the best known performance guarantees for prediction and lossless compression algorithms in various settings. This result substantiates the efficiency of this hierarchical method and provides a compelling explanation for its practical success. In addition, we present the results of a few experiments that examine other possibilities for improving the multialphabet prediction performance of CTW-based algorithms.