Abstract--We propose the scheme to integrate transmit selection diversity/maximal-ratio combining (TSD/MRC) with multicarrier (MC) direct-sequence code-division multiple access (DS-CDMA) for various wireless networks. Applying this TSD/MRC-based scheme, the transmitter jointly selects the optimal subcarrier-and-antenna pair to significantly decrease the peak-to-average power ratio (PAPR), which is one of the main problems inherently associated with MC DS-CDMA communications. Over the frequency-selective Nakagami- fading channels, we develop the unified analytical framework to analyze the symbol-error rate (SER) of the scheme implemented in different types of wireless networks, while dealing with the perfect and imperfect channel state information (CSI) feedbacks, respectively. The imperfect feedbacks we focus on include delayed feedbacks and erroneous feedbacks. Taking the imperfectness of the feedback into account, the resultant SER is compared with that of both conventional selection...