Abstract--The current framework of network utility maximization for rate allocation and its price-based algorithms assumes that each link provides a fixed-size transmission "pipe" and each user's utility is a function of transmission rate only. These assumptions break down in many practical systems, where, by adapting the physical layer channel coding or transmission diversity, different tradeoffs between rate and reliability can be achieved. In network utility maximization problems formulated in this paper, the utility for each user depends on both transmission rate and signal quality, with an intrinsic tradeoff between the two. Each link may also provide a higher (or lower) rate on the transmission "pipes" by allowing a higher (or lower) decoding error probability. Despite nonseparability and nonconvexity of these optimization problems, we propose new price-based distributed algorithms and prove their convergence to the globally optimal rate-reliability trade...
Jang-Won Lee, Mung Chiang, A. Robert Calderbank