Sciweavers

EOR
2007

Comprehensible credit scoring models using rule extraction from support vector machines

13 years 11 months ago
Comprehensible credit scoring models using rule extraction from support vector machines
In recent years, Support Vector Machines (SVMs) were successfully applied to a wide range of applications. Their good performance is achieved by an implicit non-linear transformation of the original problem to a high-dimensional (possibly infinite) feature space in which a linear decision hyperplane is constructed that yields a nonlinear classifier in the input space. However, since the classifier is described as a complex mathematical function, it is rather incomprehensible for humans. This opacity property prevents them from being used in many reallife applications where both accuracy and comprehensibility are required, such as medical diagnosis and credit risk evaluation. To overcome this limitation, rules can be extracted from the trained SVM that are interpretable by humans and 1
David Martens, Bart Baesens, Tony Van Gestel, Jan
Added 13 Dec 2010
Updated 13 Dec 2010
Type Journal
Year 2007
Where EOR
Authors David Martens, Bart Baesens, Tony Van Gestel, Jan Vanthienen
Comments (0)