We show how Formal Concept Analysis (FCA) can be applied to Collaborative Recommenders. FCA is a mathematical method for analysing binary relations. Here we apply it to the relation between users and items in a collaborative recommender system. FCA groups the users and items into concepts, ordered by a concept lattice. We present two new algorithms for finding neighbours in a collaborative recommender. Both use the concept lattice as an index to the recommender's ratings matrix. Our experimental results show a major decrease in the amount of work needed to find neighbours, while guaranteeing no loss of accuracy or coverage.
Patrick du Boucher-Ryan, Derek G. Bridge