For a Heyting algebra A, we show that the following conditions are equivalent: (i) A is profinite; (ii) A is finitely approximable, complete, and completely join-prime generated; (iii) A is isomorphic to the Heyting algebra Up(X) of upsets of an image-finite poset X. We also show that A is isomorphic to its profinite completion iff A is finitely approximable, complete, and the kernel of every finite homomorphic image of A is a principal filter of A.