Sciweavers

MSCS
2006

Differential categories

14 years 12 days ago
Differential categories
This paper revisits the authors' notion of a differential category from a different perspective. A differential category is an additive symmetric monoidal category with a comonad (a "coalgebra modality") and a differential combinator. The morphisms of a differential category should be thought of as the linear maps; the differentiable or smooth maps would then be morphisms of the coKleisli category. The purpose of the present paper is to directly axiomatize differentiable maps and thus to move the emphasis from the linear notion to structures resembling the coKleisli category. The result is a setting with a more evident and intuitive relationship to the familiar notion of calculus on smooth maps. Indeed a primary example is the category whose objects are Euclidean spaces and whose morphisms are smooth maps. A Cartesian differential category is a Cartesian left additive category which possesses a Cartesian differential operator. The differential operator itself must satisf...
Richard Blute, J. Robin B. Cockett, R. A. G. Seely
Added 14 Dec 2010
Updated 14 Dec 2010
Type Journal
Year 2006
Where MSCS
Authors Richard Blute, J. Robin B. Cockett, R. A. G. Seely
Comments (0)