In previous optimization-based methods of 3D planar-faced object reconstruction from single 2D line drawings, the missing depths of the vertices of a line drawing (and other parameters in some methods) are used as the variables of the objective functions. A 3D object with planar faces is derived by finding values for these variables that minimize the objective functions. These methods work well for simple objects with a small number N of variables. As N grows, however, it is very difficult for them to find the expected objects. This is because with the nonlinear objective functions in a space of large dimension N, the search for optimal solutions can easily get trapped into local minima. In this paper, we use the parameters of the planes that pass through the planar faces of an object as the variables of the objective function. This leads to a set of linear constraints on the planes of the object, resulting in a much lower dimensional null space where optimization is easier to achieve....