Variational Bayesian Expectation-Maximization (VBEM), an approximate inference method for probabilistic models based on factorizing over latent variables and model parameters, has been a standard technique for practical Bayesian inference. In this paper, we introduce a more general approximate inference framework for conjugate-exponential family models, which we call Latent-Space Variational Bayes (LSVB). In this approach, we integrate out the model parameters in an exact way, leaving only the latent variables. It can be shown that the LSVB approach gives better estimates of the model evidence as well as the distribution over the latent variables than the VBEM approach, but, in practice, the distribution over the latent variables has to be approximated. As a practical implementation, we present a First-order LSVB (FoLSVB) algorithm to approximate the distribution over the latent variables. From this approximate distribution, one can also estimate the model evidence and the posterior ov...