Sciweavers

PR
2008

SVD based initialization: A head start for nonnegative matrix factorization

14 years 15 days ago
SVD based initialization: A head start for nonnegative matrix factorization
We describe Nonnegative Double Singular Value Decomposition (NNDSVD), a new method designed to enhance the initialization stage of nonnegative matrix factorization (NMF). NNDSVD can readily be combined with existing NMF algorithms. The basic algorithm contains no randomization and is based on two SVD processes, one approximating the data matrix, the other approximating positive sections of the resulting partial SVD factors utilizing an algebraic property of unit rank matrices. Simple practical variants for NMF with dense factors are described. NNDSVD is also well suited to initialize NMF algorithms with sparse factors. Many numerical examples suggest that NNDSVD leads to rapid reduction of the approximation error of many NMF algorithms. 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Christos Boutsidis, Efstratios Gallopoulos
Added 14 Dec 2010
Updated 14 Dec 2010
Type Journal
Year 2008
Where PR
Authors Christos Boutsidis, Efstratios Gallopoulos
Comments (0)