Sciweavers

PPL
2006

Inherently Parallel Geometric Computations

13 years 11 months ago
Inherently Parallel Geometric Computations
A new computational paradigm is described which o ers the possibility of superlinear and sometimes unbounded speedup, when parallel computation is used. The computations involved are subject only to given mathematical constraints and hence do not depend on external circumstances to achieve superlinear performance. The focus here is on geometric transformations. Given a geometric object A with some property, it is required to transform A into another object B which enjoys the same property. If the transformation requires several steps, each resulting in an intermediate object, then each of these intermediate objects must also obey the same property. We show that in transforming one triangulation of a polygon into another, a parallel algorithm achieves a superlinear speedup. In the case where a convex decomposition of a set of points is to be transformed, the improvement in performance is unbounded, meaning that a parallel algorithm succeeds in solving the problem as posed, while all se...
Selim G. Akl
Added 14 Dec 2010
Updated 14 Dec 2010
Type Journal
Year 2006
Where PPL
Authors Selim G. Akl
Comments (0)