Corners and junctions are landmarks characterized by the lack of differentiability in the unit tangent to the image level curve. Detectors based on differential operators are not, by their own definition, the best posed as they require a higher degree of differentiability to yield a reliable response. We argue that a corner detector should be based on the degree of continuity of the tangent vector to the image level sets, work on the image domain and need no assumptions on neither the image local structure nor the particular geometry of the corner/junction. An operator measuring the degree of differentiability of the projection matrix on the image gradient fulfills the above requirements. Because using smoothing kernels leads to corner misplacement, we suggest an alternative fake response remover based on the receptive field inhibition of spurious details. The combination of both orientation discontinuity detection and noise inhibition produce our inhibition orientation energy (IOE) l...