We address the problem of localizing and obtaining high-resolution footage of the people present in a scene. We propose a biologically-inspired solution combining pre-attentive, low-resolution sensing for detection with shiftable, high-resolution, attentive sensing for confirmation and further analysis. The detection problem is made difficult by the unconstrained nature of realistic environments and human behaviour, and the low resolution of pre-attentive sensing. Analysis of human peripheral vision suggests a solution based on integration of relatively simple but complementary cues. We develop a Bayesian approach involving layered probabilistic modeling and spatial integration using a flexible norm that maximizes the statistical power of both dense and sparse cues. We compare the statistical power of several cues and demonstrate the advantage of cue integration. We evaluate the Bayesian cue integration method for human detection on a labelled surveillance database and find that it...
James H. Elder, Simon J. D. Prince, Yuqian Hou, Mi