The parameter space for the ellipses in a two dimensional image is a five dimensional manifold, where each point of the manifold corresponds to an ellipse in the image. The parameter space becomes a Riemannian manifold under a Fisher-Rao metric, which is derived from a Gaussian model for the blurring of ellipses in the image. Two points in the parameter space are close together under the Fisher-Rao metric if the corresponding ellipses are close together in the image. The Fisher-Rao metric is accurately approximated by a simpler metric under the assumption that the blurring is small compared with the sizes of the ellipses under consideration. It is shown that the parameter space for the ellipses in the image has a finite volume under the approximation to the Fisher-Rao metric. As a consequence the parameter space can be replaced, for the purpose of ellipse detection, by a finite set of points sampled from it. An efficient algorithm for sampling the parameter space is described. The a...
Stephen J. Maybank