Fine-grained network measurement requires routers and switches to update large arrays of counters at very high link speed (e.g. 40 Gbps). A naive algorithm needs an infeasible amount of SRAM to store both the counters and a flow-tocounter association rule, so that arriving packets can update corresponding counters at link speed. This has made accurate per-flow measurement complex and expensive, and motivated approximate methods that detect and measure only the large flows. This paper revisits the problem of accurate per-flow measurement. We present a counter architecture, called Counter Braids, inspired by sparse random graph codes. In a nutshell, Counter Braids "compresses while counting". It solves the central problems (counter space and flow-to-counter association) of per-flow measurement by"braiding"a hierarchy of counters with random graphs. Braiding results in drastic space reduction by sharing counters among flows; and using random graphs generated on-the-fl...