Previous studies have shown adaptive cruise control (ACC) can compromise driving safety when drivers do not understand how the ACC functions, suggesting that drivers need to be informed about the capabilities of this technology. This study applies ecological interface design (EID) to create a visual representation of ACC behavior, which is intended to promote appropriate reliance and support effective transitions between manual and ACC control. The EID display reveals the behavior of ACC in terms of time headway (THW), time to collision (TTC), and range rate. This graphical representation uses emergent features that signal the state of the ACC. Two failure modes—exceedance of braking algorithm limits and sensor failures—were introduced in the driving contexts of traffic and rain, respectively. A medium-fidelity driving simulator was used to evaluate the effect of automation (manual, ACC control), and display (EID, no display) on ACC reliance, brake response, and driver intervent...
Bobbie D. Seppelt, John D. Lee