Cryptanalysis of ciphers usually involves massive computations. The security parameters of cryptographic algorithms are commonly chosen so that attacks are infeasible with available computing resources. Thus, in the absence of mathematical breakthroughs to a cryptanalytical problem, a promising way for tackling the computations involved is to build special-purpose hardware exhibiting a (much) better performance-cost ratio than off-the-shelf computers. This contribution presents a variety of cryptanalytical applications utilizing the Cost-Optimized Parallel Code Breaker (COPACOBANA) machine, which is a highperformance low-cost cluster consisting of 120 field-programmable gate arrays (FPGAs). COPACOBANA appears to be the only such reconfigurable parallel FPGA machine optimized for code breaking tasks reported in the open literature. Depending on the actual algorithm, the parallel hardware architecture can outperform conventional computers by several orders of magnitude. In this work, we ...