Starting from the logical description of gene regulatory networks developed by R. Thomas, we introduce an enhanced modelling approach based on timed automata. We obtain a refined qualitative description of the dynamical behaviour by exploiting not only information on ratios of kinetic parameters related to synthesis and decay, but also constraints on the time delays associated with the operations of the system. We develop a formal framework for handling such temporal constraints using timed automata, discuss the relationship with the original Thomas formalism, and demonstrate the potential of our approach by analysing an illustrative gene regulatory network of bacteriophage .