Sciweavers

IPL
2007

Linear-time algorithms for problems on planar graphs with fixed disk dimension

13 years 11 months ago
Linear-time algorithms for problems on planar graphs with fixed disk dimension
The disk dimension of a planar graph G is the least number k for which G embeds in the plane minus k open disks, with every vertex on the boundary of some disk. Useful properties of graphs with a given disk dimension are derived, leading to an algorithm to obtain an outerplanar subgraph of a graph with disk dimension k by removing at most 2k−2 vertices. This reduction is used to obtain linear-time exact and approximation algorithms on graphs with fixed disk dimension. In particular, a linear-time approximation algorithm is presented for the pathwidth problem. Key Words: Approximation Algorithms, Design of Algorithms, Disk Dimension, Outerplanar Graphs, Pathwidth, Planar Graphs.
Faisal N. Abu-Khzam, Michael A. Langston
Added 15 Dec 2010
Updated 15 Dec 2010
Type Journal
Year 2007
Where IPL
Authors Faisal N. Abu-Khzam, Michael A. Langston
Comments (0)