Given a transportation network, a vulnerable population, and a set of destinations, evacuation route planning identifies routes to minimize the time to evacuate the vulnerable population. Evacuation route planning is a vital components of efforts by civil authorities to prepare for both natural and man-made disasters (e.g., hurricanes, terrorist acts, etc). However, evacuation route planning is computationally challenging due to the size of transportation networks, the large number of evacuees, and capacity constraints. For example, the number of evacuees often far exceeds the bottleneck capacity, i.e., the minimum cut of a given network. Current approaches (e.g., linear programming and Capacity Constrained Route Planner (CCRP), a recently proposed evacuation planning algorithm) do not scale well because of intensive computation needs in order to produce the schedules of evacuees as well as routing plans. This paper presents innovative heuristics scalable to very large transportation ...