We propose a new method for using anaphoric information in Latent Semantic Analysis (lsa), and discuss its application to develop an lsa-based summarizer which achieves a significantly better performance than a system not using anaphoric information, and a better performance by the rouge measure than all but one of the single-document summarizers participating in duc-2002. Anaphoric information is automatically extracted using a new release of our own anaphora resolution system, guitar, which incorporates proper noun resolution. Our summarizer also includes a new approach for automatically identifying the dimensionality reduction of a document on the basis of the desired summarization percentage. Anaphoric information is also used to check the coherence of the summary produced by our summarizer, by a reference checker module which identifies anaphoric resolution errors caused by sentence extraction. Key words: Summarization, latent semantic analysis, singular value decomposition, an...