Abstract--In this work, we study how continuous video monitoring and intelligent video processing can be used in eldercare to assist the independent living of elders and to improve the efficiency of eldercare practice. More specifically, we develop an automated activity analysis and summarization for eldercare video monitoring. At the object level, we construct an advanced silhouette extraction, human detection and tracking algorithm for indoor environments. At the feature level, we develop an adaptive learning method to estimate the physical location and moving speed of a person from a single camera view without calibration. At the action level, we explore hierarchical decision tree and dimension reduction methods for human action recognition. We extract important ADL (activities of daily living) statistics for automated functional assessment. To test and evaluate the proposed algorithms and methods, we deploy the camera system in a real living environment for about a month and have c...