We propose a semantic passage segmentation method for a Question Answering (QA) system. We define a semantic passage as sentences grouped by semantic coherence, determined by the topic assigned to individual sentences. Topic assignments are done by a sentence classifier based on a statistical classification technique, Maximum Entropy (ME), combined with multiple linguistic features. We ran experiments to evaluate the proposed method and its impact on application tasks, passage retrieval and template-filling for question answering. The experimental result shows that our semantic passage retrieval method using topic matching is more useful than fixed length passage retrieval. With the template-filling task used for information extraction in the QA system, the value of the sentence topic assignment method was reinforced. Ó 2007 Elsevier Inc. All rights reserved.