Poor quality images can significantly affect the accuracy of iris-recognition systems because they do not have enough feature information. However, existing quality measures have focused on parameters or factors other than feature information. The quality of feature available for measure is a combination of the distinctiveness of the iris region and the amount of iris region available. Some irises may only have a small area of changing patterns. Due to this, the proposed approach automatically selects the portions of the iris with the most distinguishable changing patterns to measure the feature information. The combination of occlusion and dilation determines the amount of iris region available and is considered in the proposed quality measure. The quality score is the fused result of the feature information score, the occlusion score, and the dilation score. The relationship between the quality score and recognition accuracy is evaluated using 2-D Gabor and 1-D Log-Gabor wavelet appr...