Background: G- Protein coupled receptors (GPCRs) comprise the largest group of eukaryotic cell surface receptors with great pharmacological interest. A broad range of native ligands interact and activate GPCRs, leading to signal transduction within cells. Most of these responses are mediated through the interaction of GPCRs with heterotrimeric GTP-binding proteins (Gproteins). Due to the information explosion in biological sequence databases, the development of software algorithms that could predict properties of GPCRs is important. Experimental data reported in the literature suggest that heterotrimeric G-proteins interact with parts of the activated receptor at the transmembrane helix-intracellular loop interface. Utilizing this information and membrane topology information, we have developed an intensive exploratory approach to generate a refined library of statistical models (Hidden Markov Models) that predict the coupling preference of GPCRs to heterotrimeric G-proteins. The meth...
Nikolaos G. Sgourakis, Pantelis G. Bagos, Panagiot