Diffusion tensor magnetic resonance imaging (DT-MRI) permits the noninvasive assessment of tissue microstructure and, with fibre-tracking algorithms, allows for the 3-D trajectories of white matter fasciculi to be reconstructed noninvasively. Probabilistic algorithms allow one to assign a "confidence" to a given reconstructed pathway--but often rely on a priori assumptions about sources of uncertainty in the data. Bootstrap methods have been proposed as a way of circumventing this problem, deriving the uncertainty from the data themselves--but acquisition times for data amenable to precise and robust bootstrapping are clinically prohibitive. By combining the wild bootstrap, recently introduced to the DT-MRI literature, with tractography, we show how confidence can be assigned to reconstructed trajectories using data collected in a fraction of the time required for regular bootstrapping. We compare in vivo wild bootstrap tracking results with regular tracking results and show ...
D. K. Jones