Despite its important applications in various disciplines in science and engineering, the Euclidean Voronoi diagram for spheres, also known as an additively weighted Voronoi diagram, in 3D space has not been studied as much as it deserves. In this paper, we present an algorithm to compute the Euclidean Voronoi diagram for 3D spheres with different radii. The presented algorithm follows Voronoi edges one by one until the construction is completed in O(mn) time in the worst-case, where m is the number of edges in the Voronoi diagram and n is the number of spherical balls. As building blocks, we show that Voronoi edges are conics that can be precisely represented as rational quadratic Be