Computational fluid dynamics (CFD) of complex processes and complicated geometries embraces the transport of momentum, heat, and mass including the description of reaction kinetics and thermodynamics. The paper outlines the numerical models available for analyzing these processes and presents examples of such methodology. The unprecedented growth in computer capability has resulted in efficient simulations of most transport phenomena. The aerospace's interest in high-pressure turbulent combustion has created efficient computational tools for analyzing run-away-reactions in the process industries. Practical turbulence models, generalized thermodynamic properties, and extensive chemical kinetics data bases are currently used in three-dimensional, steady-state simulations. However, industrial needs have challenged CFD modelers to improve their flow solvers in order to simulate flows with more complicated physics, such as spray combustion, acoustic waves, transient start-up and shut-...