In this paper, a rigorous MILP formulation for grass-root design of heat exchanger networks is developed. The methodology does not rely on traditional supertargeting followed by network design steps typical of the Pinch Design Method, nor is a non-linear model based on superstructures, but rather gives cost-optimal solutions in one step. Unlike most models, it considers splitting, non-isothermal mixing and it counts shells/units. The model relies on transportation/transshipment concepts that are complemented with constraints that allow keeping track of flow rate consistency when splitting takes place and with mechanisms to count heat exchanger shells and units. Several examples from the literature were tested, finding that the model usually obtains better solutions. In some cases, the model produced unknown solutions that were not found using superstructure optimization methods, even when the same pattern of matches is used.
Andrés F. Barbaro, Miguel J. Bagajewicz