Real-time image transmission is crucial to an emerging class of distributed embedded systems operating in open network environments. Examples include avionics mission replanning over Link-16, security systems based on wireless camera networks, and online collaboration using camera phones. Meeting image transmission deadlines is a key challenge in such systems due to unpredictable network conditions. In this paper, we present CAMRIT, a Control-based Adaptive Middleware framework for Real-time Image Transmission in distributed real-time embedded systems. CAMRIT features a distributed feedback control loop that meets image transmission deadlines by dynamically adjusting the quality of image tiles. We derive an analytic model that captures the dynamics of a distributed middleware architecture. A control-theoretic methodology is applied to systematically design a control algorithm with analytic assurance of system stability and performance, despite uncertainties in network bandwidth. Experi...